Name:

The Size & Mass of atoms

5.1.1.5

5.1.1.5 - Students should be able to:

 $\hfill\square$ State that atoms a very small, with a radius of 0.1 nm

- \Box Explain that the nucleus of an atom is even smaller = 1/10,000 the radius of the atom.
- Describe how almost all of the mass of the atom is concentrated in the nucleus with the protons and neutrons.
- Define mass number and atomic number.
- □ State that the element is defined by the atomic number.
- □ Calculate the number of protons, neutrons and electrons in an atom.
- Explain what isotopes of an element are.

How small is an atom?

- Write down how small you think an atom is on a post-it.
- You could use a comparison to another object....
- Or you could use units, e.g. meters... (m)

The Scale of the Universe 2

How small is an atom?

• Atoms are very small, they have a radius of about 0.1 nm

Task: Label the atom

How big is the nucleus compared with the whole atom?

How small is the nucleus compared with the whole atom?

The radius of a nucleus is less than 1/10,000 of the atom!

- Atoms are very small.
- The radius of an atom is 0.1nm (small!)

- The radius of the nucleus is 1/10,000 the radius of the atom (even smaller!)
- Almost all the mass of the atom comes from its tiny nucleus.
- The nucleus contains protons and neutrons.

Atomic number & Mass number

Mass number

2 protons + 2 neutrons = mass number of 4

Mass Number Recap

- Almost all the mass of an atom comes from the nucleus.
- The nucleus contains protons and neutrons.
- When you add up the numbers of protons and neutrons you get the mass of the atom!
- This is called the "Mass number"

Atomic Number

Look at the periodic table, what do you notice about

1	2											3	4	5	6	7	0	
				Key			1 H hydrogen										4 He helium 2	
7	9	relative atomic mass						I				11	12	14	16	19	20	
Li	Be		ato	omic sy	mbol							В	С	N	Ο	F	Ne	
lithium 3	bervllium		atomic	name (proton) numbe		boron 5	carbon 6	nitrogen	oxygen	fluorine 9	(10)						
23	24						27	28	31	32	35.5	40						
Na	Mg						AI	Si	P	S	CI	Ar						
sodium 11	magnesium 12						aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18						
39	40	45	48	51	52	55	56	59	59	63.5	65	70	73	75	79	80	84	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36	
85	88	89	91	93	96	[98]	101	103	106	108	112	115	119	122	128	127	131	
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе	
rubidium 37	strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54	
133 Cs	137 Ba	139	178 Hf	181 Ta	184 W	186 Re	190 Os	192 Ir	195 Pt	197 A u	201	204	207 Ph	209 Bi	[209]	[210]	[222] Rn	
caesium	barium	lanthanum	hafnium	tantalum	tunasten	rhenium	osmium	iridium	platinum	aold	mercurv	thallium	lead	bismuth	polonium	astatine	radon	
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
[223] Fr	[226] Ra	[227] Ac *	[261] Rf	[262] Db	[266] Sg	[264] Bh	[277] Hs	[268] Mt	[271] Ds	[272] Rg	Eleme	Elements with atomic numbers 112 – 116 have been						
francium 87	radium 88	actinium 89	rutherfordium 104	^{dubnium}	seaborgium 106	^{bohrium}	hassium 108	meitnerium 109	darmstadtium 110	roentgenium 111	reported but not fully authenticated							

• The number of protons defines the element!

Key fact!

- Elements are arranged on the periodic table in order of their atomic numbers.
- If you change the number of protons (atomic number) you change the element!

Mass number

Protons + Neutrons

So how do we work out the number of neutrons?

Mass number – atomic number = number of neutrons.

4 - 2 = 2 neutrons.

Atomic number Protons

Practice: Protons, Neutrons and Electrons

Calculate protons, neutrons and electrons for both.

A version of an element with a <u>different number of neutrons</u>, but the same number of protons and electrons.

Electron configuration

Name:

The golden rules:

First you need to count the number of ______, you can get this from the

element's _____.

The first shell can take a maximum of ______ electrons.

All other shells can take up to ______ electrons.

Draw the electron configuration for sodium (Na) and Oxygen (O):

Sodium has 11 electrons, Oxygen has 8 electrons.

How elements are arranged on the periodic table

Lithium (Li), Sodium (Na) and Potassium (K) are all in group _____ because they all have _____ electron in their outer shells.

Beryllium (Be), Magnesium (Mg) and calcium (Ca) are all in group _____ because they all have _____ electron in their outer shells.

Fluorine (F), Chlorine (CI) and Bromine (Br) are all in group _____ because they all have _____ electron in their outer shells.

Helium (He), Neon (Ne) and Argon (Ar) are all in group _____ because they all have _____ electron in their outer shells.

Elements in the same group ______ similarly because they have the same number of ______ in their outer shells.

Elements in group _____ are very ______ because they have ______ outer shells.

Electron configuration

Name:

The golden rules:

First you need to count the number of ______, you can get this from the

element's _____.

The first shell can take a maximum of ______ electrons.

All other shells can take up to ______ electrons.

Draw the electron configuration for sodium (Na) and Oxygen (O):

Sodium has 11 electrons, Oxygen has 8 electrons.

How elements are arranged on the periodic table

Lithium (Li), Sodium (Na) and Potassium (K) are all in group _____ because they all have _____ electron in their outer shells.

Beryllium (Be), Magnesium (Mg) and calcium (Ca) are all in group _____ because they all have _____ electron in their outer shells.

Fluorine (F), Chlorine (CI) and Bromine (Br) are all in group _____ because they all have _____ electron in their outer shells.

Helium (He), Neon (Ne) and Argon (Ar) are all in group _____ because they all have _____ electron in their outer shells.

Elements in the same group ______ similarly because they have the same number of ______ in their outer shells.

Elements in group ____ are very ______ because they have _____ outer shells.

Only lizards say nuculus. Don't be a lizard!

Electron Configurations

Negative electrons orbit the positive <u>nucleus</u> in electron shells. The first shell can take up to 2 electrons, all of the other shells take up to 8.

Electron configuration work through 1

Electron configuration work through 2

Development of the periodic table

5.1.2.2

The modern periodic table

- <u>https://www.youtube.com/watch?v=6rdmpx39PRk#t=39</u>
- <u>http://www.rsc.org/periodic-table</u>

Discussion

Hydrogen simplest element – 1 proton.

We arrange elements on the modern periodic table in order of their atomic numbers (number of protons).

Research Task – Development of the periodic table

Key writing skills

- 1. How is the modern periodic table arranged?
- 2. Before the discovery of protons, neutrons and electrons, how was the periodic table arranged?
 - What was the key issue with this arrangement?
- 3. How did Mendeleev fix the issues with early periodic tables?
- 4. How did knowledge of isotopes help to explain why the original order of atomic weights was not always correct?

The Modern Periodic Table

- Elements on the modern periodic table are arranged in order of their atomic number.
- The atomic number is the number of protons an element has, where every element has a different number of protons.
- The elements are also arranged in terms of their electronic structure and properties.
 - Elements in the same vertical group have the same number of outer shell electrons and therefore have similar properties.
 - Elements in the same period (going across) have the same number of electron shells.
- Metals and non-metals are also separated, as shown by the red "staircase" division line.

Vertical G	1 Grou	² Ips			Key			1 H hydrogen 1					3	4	5	6	7	0 4 He helium 2	
Horizontal Dariada	7 Li ^{lithium} 3 23 Na	9 Be beryllium 4 24 Mg	_	relati ato atomic	ve atom omic sy name (proton	ic mass mbol) numbe	r						11 B boron 5 27 Al	12 C carbon 6 28 Si	14 N nitrogen 7 31 P	16 O oxygen 8 32 S	19 F fluorine 9 35.5 CI	20 Ne neon 10 40 Ar	
Horizontal Periods	11 39 K otassium 19 85	12 40 Ca calcium 20 88	45 Sc scandium 21 89	48 Ti titanium 22 91	51 V vanadium 23 93	52 Cr chromium 24 96	55 Mn manganese 25 [98]	56 Fe iron 26 101	59 Co cobait 27 103	59 Ni ^{nickel} 28 106	63.5 Cu ^{copper} 29 108	65 Zn 30 112	13 70 Ga gallium 31 115	14 73 Ge germanium 32 119	15 75 As arsenic 33 122	sultur 16 79 Se selenium 34 128	17 80 Br bromine 35 127	argon 18 84 Kr krypton 36 131	
-	Rb ubidium 37 133 Cs caesium 55 [223] Fr francium	Sr strontium 38 137 Ba barium 56 [226] Ra radium	Y yttrium 39 139 La* Ianthanum 57 [227] Ac* actinium	Zr zirconium 40 178 Hf hafnium 72 [261] Rf rutherfordium	Nb niobium 41 181 Ta tantalum 73 [262] Db dubnium	Mo molybdenum 42 184 W tungsten 74 [266] Sg seaborgium	Tc technetium 43 186 Re rhenium 75 [264] Bh bohrium	Ru ruthenium 44 190 Os osmium 76 [277] Hs hassium	Rh rhodium 45 192 Ir iridium 77 [268] Mt meitnerium	Pd palladium 46 195 Pt platinum 78 [271] Ds darmstadium	Ag silver 47 197 Au gold 79 [272] Rg roentgenium	Cd cadmium 48 201 Hg mercury 80 Eleme	In indium 49 204 TI thallium 81 ents with report	Sn tin 50 207 Pb lead 82 atomic ted but r	Sb antimony 51 209 Bi bismuth 83 numbers not fully a	Te tellurium 52 [209] Po polonium 84 s 112 – 1 authentic	I iodine 53 [210] At astatine 85 16 have cated	Xe xenon 54 [222] Rn radon 86	 Key points Arranged by atomic number Groups (similar properties) Periods Metals & Non-metals

Early Periodic Tables

- Before the discovery of protons, neutrons and electrons, scientists tried to classify the elements in order of their atomic mass.
- The early periodic tables were incomplete (many elements were missing!) as many elements had not yet been discovered.
- Because they followed atomic mass, elements were **not** placed in groups of elements with similar properties.
- The metals & the non-metals got mixed up too.

Key points

- Arranged by atomic mass.
- Incomplete
- Many elements hadn't been discovered.
- No groups of elements with similar properties.
- Metals & non-metals mixed together.

Mendeleev's Periodic Table

- The problem with previous periodic tables was that elements were placed in the wrong groups, because the order of atomic mass was strictly followed.
- Mendeleev fixed this by leaving gaps in his groups for undiscovered elements.
- This meant that when a new element was discovered, it could be grouped with other elements that had similar properties fitting the pattern!

Mendeleev

Russian Chemist (1834-1907)

	1							G	iaps f	or un	ndiso	covered elements
19-19	H 1.01	Ш	Ш	IV	V	VI	Vii		-			
and and	Li 6.94	Be 9.01	B 10.8	C 12.0	N 14.0	16.0	F 19.0					
2	Na 23.0	Mg 24.3	AI 27.0	Si	P 31.0	S 32.1	CI 35.5		VIII			
12	K 39.1	Ca 40.1	X	Ti 47.9	V 50.9	Cr 52.0	Mn 54.9	Fe 55.9	Co 58.9	Ni 58.7		Key points
1	Cu 63.5	Zn 65.4			As 74.9	Se 79.0	Br 79.9					Mendeleev
E	Rb 85.5	Sr 87.6	Y 88.9	Zr 91.2	Nb 92.9	Mo 95.9		Ru 101	Rh 103	Pd 106		 Grouped elements by properties.
No.	Ag 108	Cd 112	In 115	Sn 119	Sb 122	Te 128	1 127					 Left gaps for undiscovered elements.
	Ce 133	Ba 137	La 139		Ta 181	W 184		Os 194	Ir 192	Pt 195		 Newly discovered elements fit their
	Au 197	Hg 201	Ti 204	Pb 207	Bi 209							predicted properties – so fit the pattern.
234-1	907)			Th 232		U 238						

Isotopes – Why arranging in order of atomic mass didn't work!

- Elements come in different isotopes.
- All isotopes of an element have the same number of protons and electrons but a different number of neutrons.
- This changes the atomic mass of the element.
- For instance, carbon has 15 isotopes each with different atomic masses.
- If you tried to arrange elements in order of atomic mass, the isotopes would spoil the order.

Carbon has many isotopes, each with a different atomic mass.

This means you cannot arrange elements in order of atomic mass, because elements wouldn't fit the pattern of properties in their groups.

Kahoot

https://play.kahoot.it/#/k/8bad371b-b948-4588-b974-36a8b92bd9ca

Extended Writing Task

- Describe the differences between the early periodic tables and our current periodic table.
- Explain why the periodic table has changed throughout the years.

Teacher guidance

- Use questioning to create mind map on the whiteboard as essay plan.
- Ensure students read back their responses before handing to peer assessor.
- Get students to peer assess on key points and highlight where they have included key info.
- Improve answers in green pen.
- If you are teaching this more than once, please scan a WAGOLL and upload to G-Drive

The Modern Periodic Table

- Elements on the modern periodic table are arranged in order of their atomic number.
- The atomic number is the number of protons an element has, where every element has a different number of protons.
- The elements are also arranged in terms of their electronic structure and properties.
 - Elements in the same vertical group have the same number of outer shell electrons and therefore have similar properties.
 - Elements in the same period (going across) have the same number of electron shells.
- Metals and non-metals are also separated, as shown by the red "staircase" division line.

Vertical G	1 Grou	² Ips			Key			1 H hydrogen 1					3	4	5	6	7	0 4 He helium 2	
Horizontal Dariada	7 Li ^{lithium} 3 23 Na	9 Be beryllium 4 24 Mg	_	relati ato atomic	ve atom omic sy name (proton	ic mass mbol) numbe	r						11 B boron 5 27 Al	12 C carbon 6 28 Si	14 N nitrogen 7 31 P	16 O oxygen 8 32 S	19 F fluorine 9 35.5 CI	20 Ne neon 10 40 Ar	
Horizontal Periods	11 39 K otassium 19 85	12 40 Ca calcium 20 88	45 Sc scandium 21 89	48 Ti titanium 22 91	51 V vanadium 23 93	52 Cr chromium 24 96	55 Mn manganese 25 [98]	56 Fe iron 26 101	59 Co cobait 27 103	59 Ni ^{nickel} 28 106	63.5 Cu ^{copper} 29 108	65 Zn 30 112	13 70 Ga gallium 31 115	14 73 Ge germanium 32 119	15 75 As arsenic 33 122	sultur 16 79 Se selenium 34 128	17 80 Br bromine 35 127	argon 18 84 Kr krypton 36 131	
-	Rb ubidium 37 133 Cs caesium 55 [223] Fr francium	Sr strontium 38 137 Ba barium 56 [226] Ra radium	Y yttrium 39 139 La* Ianthanum 57 [227] Ac* actinium	Zr zirconium 40 178 Hf hafnium 72 [261] Rf rutherfordium	Nb niobium 41 181 Ta tantalum 73 [262] Db dubnium	Mo molybdenum 42 184 W tungsten 74 [266] Sg seaborgium	Tc technetium 43 186 Re rhenium 75 [264] Bh bohrium	Ru ruthenium 44 190 Os osmium 76 [277] Hs hassium	Rh rhodium 45 192 Ir iridium 77 [268] Mt meitnerium	Pd palladium 46 195 Pt platinum 78 [271] Ds darmstadium	Ag silver 47 197 Au gold 79 [272] Rg roentgenium	Cd cadmium 48 201 Hg mercury 80 Eleme	In indium 49 204 TI thallium 81 ents with report	Sn tin 50 207 Pb lead 82 atomic ted but r	Sb antimony 51 209 Bi bismuth 83 numbers not fully a	Te tellurium 52 [209] Po polonium 84 s 112 – 1 authentic	I iodine 53 [210] At astatine 85 16 have cated	Xe xenon 54 [222] Rn radon 86	 Key points Arranged by atomic number Groups (similar properties) Periods Metals & Non-metals

Early Periodic Tables

- Before the discovery of protons, neutrons and electrons, scientists tried to classify the elements in order of their atomic mass.
- The early periodic tables were incomplete (many elements were missing!) as many elements had not yet been discovered.
- Because they followed atomic mass, elements were **not** placed in groups of elements with similar properties.
- The metals & the non-metals got mixed up too.

Key points

- Arranged by atomic mass.
- Incomplete
- Many elements hadn't been discovered.
- No groups of elements with similar properties.
- Metals & non-metals mixed together.

Mendeleev's Periodic Table

- The problem with previous periodic tables was that elements were placed in the wrong groups, because the order of atomic mass was strictly followed.
- Mendeleev fixed this by leaving gaps in his groups for undiscovered elements.
- This meant that when a new element was discovered, it could be grouped with other elements that had similar properties fitting the pattern!

Mendeleev

Russian Chemist (1834-1907)

	1							G	iaps f	or un	ndiso	covered elements
19-19	H 1.01	Ш	Ш	IV	V	VI	Vii		-			
and and	Li 6.94	Be 9.01	B 10.8	C 12.0	N 14.0	16.0	F 19.0					
2	Na 23.0	Mg 24.3	AI 27.0	Si	P 31.0	S 32.1	CI 35.5		VIII			
12	K 39.1	Ca 40.1	X	Ti 47.9	V 50.9	Cr 52.0	Mn 54.9	Fe 55.9	Co 58.9	Ni 58.7		Key points
1	Cu 63.5	Zn 65.4			As 74.9	Se 79.0	Br 79.9					Mendeleev
E	Rb 85.5	Sr 87.6	Y 88.9	Zr 91.2	Nb 92.9	Mo 95.9		Ru 101	Rh 103	Pd 106		 Grouped elements by properties.
No.	Ag 108	Cd 112	In 115	Sn 119	Sb 122	Te 128	1 127					 Left gaps for undiscovered elements.
	Ce 133	Ba 137	La 139		Ta 181	W 184		Os 194	Ir 192	Pt 195		 Newly discovered elements fit their
	Au 197	Hg 201	Ti 204	Pb 207	Bi 209							predicted properties – so fit the pattern.
234-1	907)			Th 232		U 238						

Isotopes – Why arranging in order of atomic mass didn't work!

- Elements come in different isotopes.
- All isotopes of an element have the same number of protons and electrons but a different number of neutrons.
- This changes the atomic mass of the element.
- For instance, carbon has 15 isotopes each with different atomic masses.
- If you tried to arrange elements in order of atomic mass, the isotopes would spoil the order.

Carbon has many isotopes, each with a different atomic mass.

This means you cannot arrange elements in order of atomic mass, because elements wouldn't fit the pattern of properties in their groups.

Name:

<u>Date:</u> __/__/

History of the Periodic Table

1. Elements on the modern periodic table are put in order of their

2. The older "Early" periodic tables arranged elements in order of their _____.

These periodic tables were _____ as many elements had not yet been _____.

This meant that elements were not grouped according to their _____, and the _____ and _____ were mixed up.

3. Mendeleev improved the earlier periodic tables by _____ for undiscovered elements.

This allowed him to predict the ______ of undiscovered elements.

When new elements were discovered, he placed them in the gaps and the predicted properties were ______. This was ______ for his theory.

Keywords

Properties, Correct, Atomic Mass, Atomic Number, Discovered, Incomplete, Properties, Leaving Gaps, Metals, Evidence, Non-metals. Name:

<u>Date:</u> __/__/

History of the Periodic Table

1. Elements on the modern periodic table are put in order of their

2. The older "Early" periodic tables arranged elements in order of their _____.

These periodic tables were _____ as many elements had not yet been _____.

This meant that elements were not grouped according to their _____, and the _____ and _____ were mixed up.

3. Mendeleev improved the earlier periodic tables by _____ for undiscovered elements.

This allowed him to predict the ______ of undiscovered elements.

When new elements were discovered, he placed them in the gaps and the predicted properties were ______. This was ______ for his theory.

Keywords

Properties, Correct, Atomic Mass, Atomic Number, Discovered, Incomplete, Properties, Leaving Gaps, Metals, Evidence, Non-metals.

Guess Who?

1

I'm Lustrous (Shiny) I'm hard! I have a high density I have a high melting point I'm a great conductor of heat and electricity

Metals and Non-metals 5.1.2.3

The Big Question Why are they called "non-metals", instead of having their own name?

The properties of metals & non-metals

Put the properties into the correct columns.

- Lustrous (Shiny)
- Strong
- Poor conductor of heat & electricity
- Weak
- Brittle

- Malleable
- Good conductor of heat
- Good conductor of electricity
- Low density
- High Density

- Solid (Except mercury)
- Can be solid, liquid or gas
- Sonorous
- Dull appearance
- Makes a dull sound

Metals	Non-metals

Metals	Non-metals
 Shiny Solid (except mercury) High density Strong Malleable Good conductor of heat Good conductor of electricity Sonorous 	 Dull appearance Can be solid, liquid or gas. Low density Weak Brittle Poor conductor of heat Poor conductor of electricity Make a dull sound.

Where are the metals & non-metals?

Hyc 1	droge 2	en is a	a nor	n-me	tal!							3	4	5	6	7	0
				Key			1 H hydrogen 1		N	on-n	netal	s tow	/ards	righ	t and	top	4 He helium 2
7	9		relativ	ve atom	ic mass							11	12	14	16	19	20
Li	Be		ato	omic sy	mbol							B	C	N	0	F	Ne
3	beryllium 4		atomic	(proton) numbe	r						5	6	nitrogen	oxygen	fluorine 9	10
23	24			M ⁻	,						1	27	28	31	32	35.5	40
Na	Mg			N/A	atale	towa	rde l	oft a	nd ha	otton	0	AI	Si	P	S	CI	Ar
sodium 11	magnesium 12					luvva	nusi	erta		Juon		aluminium 13	silicon 14	phosphorus 15	^{sulfur}	chlorine 17	argon 18
39	40	45	48	51	52	55	56	59	59	63.5	65	70	73	75	79	80	84
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
85	88	89	91	93	96	[98]	101	103	106	108	112	115	119	122	128	127	131
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	C	In	Sn	Sb	Те	1	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadnum	indium	tin 50	antimony 51	tellurium	iodine	xenon
122	127	120	170	101	104	106	100	102	105	107	101	43	207	200	12001	[210]	[222]
Ce	Ba	139 1a*	170 Hf	Ta	104 W	Re	06	192 Ir	Pt	Δ.	Ha	204 TI	207 Ph	209 Bi	[209] Po		[222] Rn
caesium	barium	lanthanum	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	nercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
[223]	[226]	[227]	[261]	[262]	[266]	[264]	[277]	[268]	[271]	[272]					440	10	
Fr	Ra	Ac*	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Eleme	ents with	atomic	numbers	S 112 – 1	16 have	been
francium 87	radium 88	actinium 89	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	darmstadtium 110	roentgenium 111		repor		lot lully	aumenti	caleu	

Memory tip: Aluminium is under the stairs!

The Big Question

Why are they called "non-metals", instead of having their own name?

Because the majority of elements are metals!

1

0 4

							Н										He
				Kev			hydrogen 1										helium
7	9	1	relativ	ve atom	ic mass		I					11	12	1/	16	10	20
Ĺ	Be		ato	mic sv	mbol							B	Ċ	N	0	F	Ne
lithium	beryllium			name								boron	carbon	nitrogen	oxygen	fluorine	neon
3	4		atomic	(proton) numbe	r						5	6	7	8	9	10
23	24											27	28	31	32	35.5	40
Na	Mg											AI	Si	P	S	CI	Ar
sodium	magnesium 12											aluminium	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
39	40	45	48	51	52	55	56	59	59	63.5	65	70	73	75	79	80	84
ĸ	Ca	Sc	Ti	V	Čr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85	88	89	91	93	96	[98]	101	103	106	108	112	115	119	122	128	127	131
Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
37	38	39	40	1000ium	42	43	ruthenium	45	46	47	48	49	50	antimony 51	52	53	54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209	[209]	[210]	[222]
Cs	Ba	La*	Hf	Та	W	Re	Os	Ir	Pt	Au	Hq	TI	Pb	Bi	Po	At	Rn
caesium	barium	lanthanum	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
[223]	[226]	[227]	[261]	[262]	[266]	[264]	[277]	[268]	[271]	[272]	Flores		atomia	nu una la com	110		haan
Fr	Ra	Ac*	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Eleme	ents with	tod but	numbers	s 112 – 1 authoriti	no nave	been
francium 87	radium 88	actinium 89	rutherfordium 104	dubnium 105	seaborgium 106	107	hassium 108	109	darmstadtium	roentgenium 111		repor		not runy a	authenti	Jaleu	
										0.0011000000							

Group Discussion

Why are the metals mostly to the left of the periodic table?

- Think in terms of their "electronic structure".
- Your group should write down one <u>refined</u> answer on a mini-whiteboard.

Extension

Draw the electron configurations of sodium, magnesium and aluminium. Use this as justification for your answer.

Why are the metals mostly to the left of the periodic table?

Metals don't have many electrons in their outer shells e.g. group 1 metals all have 1 electron in their outer shell.

(1)	(2)											3	4	5	6	7	0
Ĭ	Ĭ			Key			1 H hydrogen 1										4 He helium 2
7	9 B o		relativ	ve atomi	ic mass			_				11 B	12	14	16	19 E	20
LI	beryllium		alu		IDOI							boron	carbon	nitrogen	oxygen	fluorine	neon
3	4		atomic	(proton)) numbe	r						5	6	7	8	9	10
23	24											27	28	31	32	35.5	40
Na	Mg											AI	Si	Р	S	CI	Ar
sodium	magnesium											aluminium	silicon	phosphorus	sulfur	chlorine	argon
11	12											13	14	15	16	17	18
39	40	45	48	51	52	55	56	59	59	63.5	65	70	73	75	79	80	84
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
85	88	89	91	93	96	[98]	101	103	106	108	112	115	119	122	128	127	131
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Хе
rubidium 37	strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	50	antimony 51	tellurium 52	iodine 53	xenon 54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209	[209]	[210]	[222]
Cs	Ba	La*	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
caesium	barium	lanthanum	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	50	57	12	/3	/4	/5	/6	11	78	/9	80	81	82	83	84	85	80
[223]	[226]	[227]	[261]	[262]	[266]	[264]	[277]	[268]	[271]	[272]	Flom	onte with	atomio	number	112 1	16 have	hoon
Fr	Ra	AC*	Rf	Db	Sg	Bh	HS	Mt	Ds	Rg	Liente	repor	ted but	numbers	authenti	cated	Deen
87	88	89	104	105	106	107	108	109	110	111		repor		lot fully a	authenti	calcu	

Metals don't have many electrons in their outer shells, so they are towards the left of the periodic table.

Because metals are losers!

When elements react, they want to achieve full outer shells Metals form POSITIVE ions What's the easiest way for metals to achieve full outer shells?

Your choice:

Support

Matala farma nasitina i		Name:	
Where on the periodic table can the r	DNS		
In terms of their electronic structure,	why are the metals found he	re?	
 Draw the electron configurati Show how they lose electrons Then give the charge of the p 	ons for the metals: Sodium (f s when they react to form po s ositive ion.	Na), Magnesium (Mg sitive ions.) and Aluminium (Al).
Na	Mg		Al
Sodium loses negative electrons to achieve a full outer shell.	Magnesium I negative elec achieve a full shell.	oses trons to l outer	Aluminium loses negative electrons to achieve a full outer shell.
Na	Mg		A
The sodium ion hasless negative electron than positive protons in its nucleus so has a charge.	The magnesium ion has negative electrons than protons in its nucleus so charge.	less Th positive ne has a pr 	e aluminium ion has less gative electrons than positive otons in its nucleus so has a charge.

If you think you don't need support:

- 1. Write a short paragraph to explain why metals form positive ions.
- 2. How can the charge of a metal ion be easily worked out by looking at the periodic table?
- 3. Draw the electron configuration for Potassium and then draw its ion and give its charge.
- 4. Draw the electron configuration for Calcium and then draw its ion and give its charge.

Self Assess

You're the teacher!

- In twos/threes, prepare a short explanation of how to draw electron configuration for the ion of a metal (of your choice)
- How do you work out its charge?
- You will explain your working to the class and draw on the whiteboard.

Name:

Metals form positive ions

Where on the periodic table can the metals be found?

In terms of their electronic structure, why are the metals found here?

- Draw the electron configurations for the metals: Sodium (Na), Magnesium (Mg) and Aluminium (Al).
- Show how they lose electrons when they react to form **positive** ions.
- Then give the charge of the positive ion.

The properties of metals & non-metals

Metals	Non-metals

- Lustrous (Shiny)
- Strong
- Poor conductor of heat & electricity
- Weak
- Brittle
- Malleable
- Good conductor of heat
- Good conductor of electricity
- Low density
- High Density
- Solid (Except mercury)
- Can be solid, liquid or gas
- Sonorous
- Dull appearance
- Makes a dull sound

The properties of metals & non-metals

Metals	Non-metals

- Lustrous (Shiny)
- Strong
- Poor conductor of heat & electricity
- Weak
- Brittle
- Malleable
- Good conductor of heat
- Good conductor of electricity
- Low density
- High Density
- Solid (Except mercury)
- Can be solid, liquid or gas
- Sonorous
- Dull appearance
- Makes a dull sound

Group 0 – The Noble Gases

5.1.2.4

Starter: Draw the electron configurations of the noble gases: Helium (He), Neon (Ne) and Argon (Ar)

Complete the mind map by listening to the experts

The boiling points of the noble gases increase with increasing atomic mass (going down the group)

Graph Skills – Complete the graph to show the trend in boiling points down group 0.

Noble Gas	Boiling Point (^o C)
He	-268.6
Ne	-245.7
Ar	-188.3
Kr	-151.5
Хе	-106.4
Rn	-61.5

Before you begin, what type of data is this?

CATEGORIC

Therefore, what type of graph should you draw?

BAR GRAPH

Be careful with the scale, this is the highest temperature!

Conclusion

As you go down group 0, the boiling points increase.

Low Density

- The density of a substance is how heavy it is for its size.
- The alkali metals all have low densities (as far as metals go, they are quite light).
- The first three alkali metals (Li, Na & K) are all less dense than water this is why they float on the surface.

Reactions with Water

 The alkali metals react with water to form a hydroxide (which makes the solution alkaline) and hydrogen gas.

$$2 \text{ Na}_{(s)} + 2 \text{ H}_2\text{O}_{(l)} \rightarrow 2 \text{ NaOH}_{(aq)} + \text{H}_{2 (g)}$$

sodium + water \rightarrow sodium hydroxide + hydrogen

- Universal indicator turns purple in alkaline solutions.
- The hydrogen gas can be tested for by using a lit splint, it will give a squeaky pop sound if hydrogen is present.

Reactivity – Down the Group

1 In group 1, the further down the group an element is, the more reactive it is.

Grade 9: This is because the further from the nucleus the outer electron is, the more easily the electron is lost!

Ionic Compounds

- When group 1 elements react with non-metals, they form ionic compounds.
- The metal ion formed has a charge of +1, as it loses 1 electron to achieve a full outer shell.
- The ionic compound formed is always white.
- The ionic compound will dissolve easily in water to form a colourless solution.

Group 1 – The Alkali Metals

5.1.2.5

Starter: Place your bets:	Alkali Metal	Rank in order of reactivity (1-3)
	Lithium (Li)	
	Sodium (Na)	
	Potassium (K)	

Gather around for teacher demo

Group 1 – The Alkali Metals

Group 1 – The Alkali Metals

- Elements in group 1 of the periodic table are known as alkali metals.
- They all have low densities (the first three are less dense than water!)
- They react with water to form hydrogen gas.
- Also, when they react with water, they form "metal hydroxides" this makes the water into an alkaline solution.
- The further down the group you go, the more reactive the alkali metal.
- Alkali metals also react with non-metals to form "ionic compounds"
- The ionic compounds formed are white solids that easily dissolve in water to form colourless solutions.
- 7 Li lithium 3 23 Na sodium 11 39 Κ potassium 19 85 Rb rubidium 37 133 Cs caesium 55 [223] Fr francium 87

Questions – The alkali Metals

- 1. What are the key properties of the alkali metals? (Grade 5)
- 2. What do the alkali metals react with? (Grade 5)
- 3. Why are they called "alkali" metals? (Grade 6)
- 4. Explain how we can test for hydrogen gas. (Grade 6)
- Give the word and symbol equation for the reaction of an alkali metal with water.
 (Grade 7)
- 6. Draw a diagram to illustrate the reaction of a group 1 element with a group 7 element to form an ionic compound. (Grade 8)
- 7. Explain the trend in reactivity going down group 1, include an annotated illustration to aid your response. (Grade 9)

Low Density

- The density of a substance is how heavy it is for its size.
- The alkali metals all have low densities (as far as metals go, they are quite light).
- The first three alkali metals (Li, Na & K) are all less dense than water this is why they float on the surface.

Reactions with Water

 The alkali metals react with water to form a hydroxide (which makes the solution alkaline) and hydrogen gas.

$$2 \text{ Na}_{(s)} + 2 \text{ H}_2\text{O}_{(l)} \rightarrow 2 \text{ NaOH}_{(aq)} + \text{H}_{2 (g)}$$

sodium + water \rightarrow sodium hydroxide + hydrogen

- Universal indicator turns purple in alkaline solutions.
- The hydrogen gas can be tested for by using a lit splint, it will give a squeaky pop sound if hydrogen is present.

Reactivity – Down the Group

1 In group 1, the further down the group an element is, the more reactive it is.

Grade 9: This is because the further from the nucleus the outer electron is, the more easily the electron is lost!

Ionic Compounds

- When group 1 elements react with non-metals, they form ionic compounds.
- The metal ion formed has a charge of +1, as it loses 1 electron to achieve a full outer shell.
- The ionic compound formed is always white.
- The ionic compound will dissolve easily in water to form a colourless solution.

Quiz – Write your answers as a numbered list.

 How do we know that the first three alkali metals are less dense than water?

• What type of compounds are formed when alkali metals react with non-metals?

• What is the charge of the ion formed when an alkali metal reacts?

• Why do metals form positive ions?

• When an alkali metal reacts with water, a ______ is formed. This makes the solution alkaline.

• What gas is formed when an alkali metal reacts with water?

• What colour are the ionic compounds formed, when a group 1 element reacts with a non-metal?

• What is a key property of ionic compounds?

• What trend occurs, as you go down group 1?

Q10.

• Why do elements become more reactive as you go down group 1?

Quiz – Mark your answers and give yourself a score out of ten.

 How do we know that the first three alkali metals are less dense than water?

Because they float on the surface of water.

• What type of compounds are formed when alkali metals react with non-metals?

Ionic compounds

• What is the charge of the ion formed when an alkali metal reacts?

+ 1

• Why do metals form positive ions?

To achieve a full outer shell.

• When an alkali metal reacts with water, a <u>hydroxide</u> is formed. This makes the solution alkaline.

• What gas is formed when an alkali metal reacts with water?

Hydrogen Gas (H₂)

• What colour are the ionic compounds formed, when a group 1 element reacts with a non-metal?

White

• What is a key property of ionic compounds?

Dissolve in water to give colourless solutions.
• What trend occurs, as you go down group 1?

Reactivity increases

• Why do elements become more reactive as you go down group 1?

As you go down the group, the outer shell electron is further away from the nucleus, so is more easily lost.

Quiz – Mark your answers and give yourself a score out of ten.

Application

• There is a choice of exam questions:

Success Criteria – Group 7 – The Halogens

Highlight group 7 on the periodic table and state that the elements in group 7 are known as the halogens.

Explain that group 7 elements form "diatomic" molecules consisting of a pair of atoms bonded together.

Describe how group 7 elements react with metals to form ionic compounds.

□ Illustrate how when group 7 elements react with metals, they gain electrons to form ions with a -1 charge.

Explain how group 7 elements bond with other non-metals to form molecular compounds.

Explain the trend in melting and boiling point in group 7 and link to relative molecular mass.

Explain why group 7 elements become less reactive as you go down the group.

Explain displacement reactions involving group 7 elements.

Group 7 – The Halogens

- The Halogens can be found in group 7 of the periodic table.
- The elements in group 7 are Fluorine (F), Chlorine (Cl), Bromine (Br) iodine (I) and Astatine (At).
- All of the Halogens are non-metals.

Diatomic Molecules

- The elements in group 7 all exist naturally as diatomic (two atom) molecules.
- The elements in group 7, all have 7 electrons in their outer shells.
- The easiest way for them to complete their outer shells is to form covalent bonds (share electrons) with another atom of the same element.
- This is why diatomic molecules form.

F₂ – Diatomic molecule of the element fluorine

Cl₂ – Diatomic molecule of the element chlorine

Br₂ – Diatomic molecule of the element bromine

Reactions with metals

- The halogens react with metals to form ionic compounds.
- The halogen forms a "halide ion" with a charge of -1.
- As it reacts, it gains an electron to complete its outer shell, hence the charge of -1.

React with other non-metals to form molecular compounds

- The elements in group 7 will also react with other non-metals.
- When they do this, they form "molecular compounds"
- A molecule is when non-metals bond together.

This is a compound because It contains atoms of different elements bonded together.

It is a **molecular compound** because the bond is between non-metals.

HCl – Hydrochloric acida molecular compound formedwhen chlorine reacts with hydrogen.

This compound has **covalent** bonding because the non-metal atoms share electrons to form a bond.

Trends in melting & boiling point

Melting & Boiling points increase

as you go down group 7

- As you go down group 7, the "relative molecular mass" of the diatomic molecules increases.
- The "relative molecular mass" is simply the atomic mass of both atoms in the molecule added together.
- As relative molecular mass increases, so does the melting and boiling point.
- So as you go down group 7, melting and boiling point increases.

	Formula	Relative Molecular Mass (g/mol)	Melting Point (°C)	Boiling Point (°C)			
	F ₂	38	- 220	- 188			
	Cl ₂	71	- 101	- 35			
	Br ₂	160	- 7.2	58.8			
↓	I ₂	254	114	184			

Reactivity – Down Group 7

7

- When non-metals react, they gain electrons to complete their outer shells. •
- As you go down group 7, reactivity decreases.
- This is because the outer electrons are further away from the nucleus. •
- This means an electron is less easily gained. •

As you go down the group, the outer electrons get away from the

This means they experience less attraction so it is harder to gain an electron element reacts.

Displacement

• A more reactive halogen can displace a less reactive halogen from an aqueous solution of its salt.

Group 7 – The Halogens

5.1.2.6

Starter: Use symbols from the periodic table to make the longest word you can.

1	2											3	4	5	6	7	0
		_		Key			1 H hydrogen 1										4 He helium 2
7 Li	9 Be		relativ	ve atomi mic svi	ic mass mbol			-				11 B	12 C	14 N	16 O	19 F	20 Ne
lithium 3	beryllium 4	atomic (proton) number										boron 5	carbon 6	nitrogen 7	oxygen	fluorine 9	neon 10
23 Na ^{sodium} 11	24 Mg ^{magnesium} 12											27 Al aluminium 13	28 Si ^{silicon} 14	31 P phosphorus 15	32 S ^{sulfur} 16	35.5 CI ^{chlorine} 17	40 Ar ^{argon} 18
39 K	40 Ca	45 Sc	48 Ti	51 V	52 Cr	55 Mn	56 Fe	59 Co	59 Ni	63.5 Cu	65 Zn	70 Ga	73 Ge	75 As	79 Se	80 Br	84 Kr
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
85 Rb ^{rubidium} 37	88 Sr strontium 38	89 Y ^{yttrium} 39	91 Zr zirconium 40	93 Nb ^{niobium} 41	96 Mo molybdenum 42	[98] Tc technetium 43	101 Ru ruthenium 44	103 Rh ^{rhodium} 45	106 Pd palladium 46	108 Ag ^{silver} 47	112 Cd cadmium 48	115 In ^{indium} 49	119 Sn 50	122 Sb antimony 51	128 Te tellurium 52	127 I iodine 53	131 Xe ^{xenon} 54
133 Cs	137 Ba	139 La *	178 Hf	181 Ta	184 W	186 Re	190 Os	192 Ir	195 Pt	197 Au	201 Hg	204 TI	207 Pb	209 Bi	[209] Po	[210] At	[222] Rn
caesium 55	^{barium} 56	lanthanum 57	^{hafnium} 72	tantalum 73	tungsten 74	rhenium 75	^{osmium} 76	iridium 77	platinum 78	^{gold} 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[261] Rf rutherfordium 104	[262] Db ^{dubnium} 105	[266] Sg ^{seaborgium} 106	[264] Bh ^{bohrium} 107	[277] Hs hassium 108	[268] Mt meitnerium 109	[271] Ds darmstadtium 110	[272] Rg roentgenium 111	Elements with atomic numbers 112 – 116 have been reported but not fully authenticated						

Group 7 – The Halogens

												$\mathbf{+}$					
1	2											3	4	5	6	7	0
Q. What type of														4 He ^{helium} 2			
7 Li lithium 311 B boron 512 C N 614 											16 O oxygen 8	19 F fluorine 9	20 Ne neon 10				
23 Na ^{sodium} 11	23 Na sodium 11 12										32 S ^{sulfur} 16	35.5 CI chlorine 17	40 Ar ^{argon} 18				
39	40	45							59	63.5	65	70	73	75	79	80 Br	84
potassium 19	calcium 20	scandium 21	Ν		n-r	ne	ta	S	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	AS arsenic 33	selenium 34	bromine 35	krypton 36
85	88	89					CG		106	108	112	115	119	122	128	127	131
RD rubidium 37	strontium 38	¥ yttrium 39	zirconium 40	niobium 41	IVIO molybdenum 42	IC technetium 43	Ru ruthenium 44	rhodium 45	palladium 46	Ag ^{silver} 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
133 Cs	137 Ba	139 La *	178 Hf	181 Ta	184 W	186 Re	190 Os	192 Ir	195 Pt	197 Au	201 Hg	204 TI	207 Pb	209 Bi	[209] Po	[210] At	[222] Rn
caesium 55	barium 56	lanthanum 57	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	^{gold} 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
[223] Fr ^{francium} 87	[226] Ra ^{radium} 88	[227] Ac* actinium 89	[261] Rf rutherfordium 104	[262] Db dubnium 105	[266] Sg seaborgium 106	[264] Bh ^{bohrium} 107	[277] Hs ^{hassium} 108	[268] Mt meitnerium 109	[271] Ds darmstadtium 110	[272] Rg roentgenium 111	Eleme	ents with repor	atomic ted but	numbers not fully	s 112 – 1 authenti	16 have cated	been

Let's make a movie

- Each group has an information pack and set of resources.
- It's your job to make a short film/presentation about the properties of group 7 elements.
- Your group should have the following roles:
 - Researcher (To gather and interpret the information)
 - Script writer (To work with the researcher to produce a script)
 - Presenter (To be on camera)
 - Producer (To make resources to include in your video)
 - Director (To direct how the film should be laid out)

Success Criteria – Group 7 – The Halogens

Highlight group 7 on the periodic table and state that the elements in group 7 are known as the halogens.

Explain that group 7 elements form "diatomic" molecules consisting of a pair of atoms bonded together.

Describe how group 7 elements react with metals to form ionic compounds.

□ Illustrate how when group 7 elements react with metals, they gain electrons to form ions with a -1 charge.

Explain how group 7 elements bond with other non-metals to form molecular compounds.

Explain the trend in melting and boiling point in group 7 and link to relative molecular mass.

Explain why group 7 elements become less reactive as you go down the group.

Explain displacement reactions involving group 7 elements.

Group 7 – The Halogens

- The Halogens can be found in group 7 of the periodic table.
- The elements in group 7 are Fluorine (F), Chlorine (Cl), Bromine (Br) iodine (I) and Astatine (At).
- All of the Halogens are non-metals.

Diatomic Molecules

- The elements in group 7 all exist naturally as diatomic (two atom) molecules.
- The elements in group 7, all have 7 electrons in their outer shells.
- The easiest way for them to complete their outer shells is to form covalent bonds (share electrons) with another atom of the same element.
- This is why diatomic molecules form.

F₂ – Diatomic molecule of the element fluorine

Cl₂ – Diatomic molecule of the element chlorine

Br₂ – Diatomic molecule of the element bromine

Reactions with metals

- The halogens react with metals to form ionic compounds.
- The halogen forms a "halide ion" with a charge of -1.
- As it reacts, it gains an electron to complete its outer shell, hence the charge of -1.

React with other non-metals to form molecular compounds

- The elements in group 7 will also react with other non-metals.
- When they do this, they form "molecular compounds"
- A molecule is when non-metals bond together.

This is a compound because It contains atoms of different elements bonded together.

It is a **molecular compound** because the bond is between non-metals.

HCl – Hydrochloric acida molecular compound formedwhen chlorine reacts with hydrogen.

This compound has **covalent** bonding because the non-metal atoms share electrons to form a bond.

Trends in melting & boiling point

Melting & Boiling points increase

as you go down group 7

- As you go down group 7, the "relative molecular mass" of the diatomic molecules increases.
- The "relative molecular mass" is simply the atomic mass of both atoms in the molecule added together.
- As relative molecular mass increases, so does the melting and boiling point.
- So as you go down group 7, melting and boiling point increases.

	Formula	Relative Molecular Mass (g/mol)	Melting Point (°C)	Boiling Point (°C)			
	F ₂	38	- 220	- 188			
	Cl ₂	71	- 101	- 35			
	Br ₂	160	- 7.2	58.8			
↓	I ₂	254	114	184			

Reactivity – Down Group 7

7

- When non-metals react, they gain electrons to complete their outer shells. •
- As you go down group 7, reactivity decreases.
- This is because the outer electrons are further away from the nucleus. •
- This means an electron is less easily gained. •

As you go down the group, the outer electrons get away from the

This means they experience less attraction so it is harder to gain an electron element reacts.

Displacement

• A more reactive halogen can displace a less reactive halogen from an aqueous solution of its salt.

